
Shareable Cursors
ACEs@Home – Episode 2

Christian Antognini

ChrisAntognini antognini.ch

@ChrisAntognini

• Senior principal consultant, trainer and partner at Trivadis

• christian.antognini@trivadis.com

• Focus: get the most out of database engines

• Logical and physical database design

• Query optimizer

• Application performance management

• Author of Troubleshooting Oracle Performance (Apress 2008/14)

• OakTable Network, Oracle ACE Director

Contents

• What Is a Cursor?

• Private and Shared SQL Areas

• Parent and Child Cursors

• Bind Variable Graduation

• Bind Variable Peeking

• Adaptive Cursor Sharing

What Is a Cursor?

• A cursor, and its associated structures, is created when an application issues a
parse call

• But, what is a cursor?

• It is a handle to a private SQL area with an associated shared SQL area

Client
Memory

Handle

Server Process
Memory

Private SQL Area

SGA
Library Cache

Shared SQL Area

Private and Shared SQL Areas

• What does a private SQL area contain?

• Data such as bind variable values and query execution state information

• It is session specific and, therefore, it is stored in the UGA

• What does a shared SQL area contain?

• The parse tree and the execution plan of the associated SQL statement

• It is stored in the library cache

• In practice, the terms cursor and private/shared SQL area are used
interchangeably

• The shared SQL areas contain the so-called parent and child cursors

Parent Cursors

• The key information stored in a parent cursor is the text of the SQL statement
on which it is based

• Several SQL statements share the same parent cursor if their text is identical

• An exception is when CURSOR_SHARING != EXACT

• V$SQLAREA returns one row for each parent cursor

• The SQL_ID column identifies a parent cursor

Child Cursors

• The key information stored in a child cursor is the execution plan and the
execution environment related to it

• Several SQL statements are able to share the same child cursor only if

• they share the same parent cursor, and

• their execution environments are compatible

• V$SQL returns one row for each child cursor

• In general, the SQL_ID and CHILD_NUMBER columns identify a child cursor

• V$SQL_SHARED_CURSOR shows why a child cursor was created

10187168 – Enhancement to Obsolete Parent

Cursors if VERSION_COUNT Exceeds a Threshold

• Child cursors associated to a parent cursor with a number of child cursors that
exceeds _CURSOR_OBSOLETE_THRESHOLD are obsoleted

• Default value: 11.2.0.3 = 100, 11.2.0.4 12.1.0.2 = 1024, 12.2.0.1+ = 8192

• To identify child cursors the ADDRESS column might be necessary

• DBMS_XPLAN cannot display obsoleted cursors

https://support.oracle.com/epmos/faces/DocumentDisplay?id=10187168.8

Too Many Child Cursors

• Applications that “generate” many
child cursors per parent cursor can
experience performance issues
after upgrading to 12.2+

• E.g. waits related to mutexes

• 2431353.1 suggests to decrease
_CURSOR_OBSOLETE_THRESHOLD

Does the Parse Time Increase Linearly with the Number Of Child Cursors?

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2431353.1
https://antognini.ch/2012/10/does-the-parse-time-increase-linearly-with-the-number-of-child-cursors/

Bind Variables

• Bind variables impact applications in two ways:

• They make programming either easier or more difficult

• They introduce, from a performance point-of-view, both an advantage and
a disadvantage

• Advantage

• Sharing of cursors in the library cache (avoid hard parses)

• Disadvantage

• Crucial information is hidden from the query optimizer

Bind Variable Graduation

• For sharing a child cursor, the type and the size of bind variables matter

• To relax the limitation related to the size, bind variable graduation is used to
part bind variables into four groups:

• Up to 32 bytes

• 33 – 128 bytes

• 129 – 2,000 bytes

• More than 2,000 bytes

• V$SQL_BIND_METADATA shows the maximum length of the group, not of the
bind variable itself

Bind Variable Peeking

• To address the disadvantage related to bind variables, the SQL engine uses bind
variable peeking

• The SQL engine is able to peek at the value of bind variables

• The problem with this approach is that the generated execution plan depends
on the values provided by the first execution

• Limitation

• SQL statements executed through DBMS_SQL cannot take advantage of
bind variable peeking (bug 13386678)

https://support.oracle.com/epmos/faces/BugDisplay?id=13386678

Adaptive Cursor Sharing

• To address the problem introduced by bind variable peeking, the SQL engine
uses adaptive cursor sharing (a.k.a. bind-aware cursor sharing)

• Its purpose is to automatically recognize when the reutilization of an already
available child cursor leads to inefficient executions

• When an inefficiency is detected, bind awareness is enabled

• The child cursor experiencing suboptimal performance is invalidated

• A new, bind-aware child cursor is created

• To force bind awareness, use the BIND_AWARE hint or set at the session or
system level _OPTIMIZER_ADAPTIVE_CURSOR_SHARING to FALSE

Adaptive Cursor Sharing – Limitations

• It is not designed to work with many bind variables (1983132.1)

• It can only take place during parse calls

• If an application keeps a cursor open, the SQL engine won’t be able to generate
a new child cursor

• Also applied to SQL statements executed by the PL/SQL engine!

• SQL statements executed through DBMS_SQL cannot take advantage of
adaptive cursor sharing

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1983132.1

Summary

• To share a parent cursor, the text of the SQL statement must match the text of
the cursor

• To share a child cursor, many criteria have to be fulfilled

• Bind variables are not always good

• Keeping cursors open is not always good

• For SQL statements that are parsed more than one time, keep in mind that
potentially every parse call could lead to a different execution plan

Q&A

