

Autonomous Database and Data Lake, a match made in... the Cloud Dr.-Ing. Holger Friedrich

Introduction

Conclusions

Puddles

3

Lakes

Cloud

- Implementation & consulting services in CH
- Experts for
 - Data Warehousing/Big Data,
 - Business Intelligence/Advanced Analytics
- Tech focus on
 - Oracle on-premises and
 - Oracle and Snowflake in the cloud
- Wide area of industries
- Multiple specialisations
- Motto: Get Value From Data
- Web site: www.sumit.ch (in German)

sumIT AG

Specialized Oracle Business Intelligence Foundation

Specialized Data Warehousing

Dr.-ing Dipl.-inform Holger Friedrich

- Informatik diploma from Karlsruhe Institute of Technology (KIT)
- Ph.D. in Robotics and Machine Learning
- 20+ years of experience with database technology
- Expert for
 - Data Integration
 - Data Warehousing / Big Data,
 - Advanced Analytics and
 - Business Intelligence
- CTO of sumIT AG

Oracle ACE for Data Warehousing / Analytics / Business Intelligence

y (KIT) Learning atabase technology

© 2020 SUMIT AG 4

/

A data lake is a system or <u>repository of data</u> stored in its natural/raw format,^[1] usually object <u>blobs</u> or files. A data lake is usually a single store of all enterprise data including raw copies of source system data and transformed data used for tasks such as <u>reporting</u>, <u>visualization</u>, <u>advanced</u> <u>analytics</u> and <u>machine learning</u>. A data lake can include structured data from relational databases (rows and columns), semi-structured data (<u>CSV</u>, logs, <u>XML</u>, <u>JSON</u>), unstructured data (emails, documents, PDFs) and binary data (images, <u>audio</u>, video).^[2] © WIKIPEDIA

Data Lake Definition

Data Puddles

SUM/IT Traditional Information Management Architecture

• 9i — read-only

- 10g write-back
- 11.2 inline pre-processing

create table dummy cust id number, cust name varchar2(20), limit number(10)) organization external type oracle loader default directory dummy dir access parameters

fields terminated by ",")

location ('dummydata.txt'));

Improvement... External Tables

Non-Partitioned

Pre-processing, loading, parsing, and processing on-the fly

- shared-nothing
- massively parallel
- scalable
- cheap storage
- non-relational
- schema on read
- scores of new
 - -tools
 - formats
 - players

HADOOP Facilitating Data Lakes

- Enhanced External Tables
- Oracle HADOOP connectors
 - directly on HDFS
 - via HIVE

All processing in the database as before

Making HADOOP Accessible to The RDBMS

- 12c (12.2 in 2016/17)
- partitioned XTs, saving I/O through
 - pruning
 - partition-wise joins

Making the database data-lake-ready on-premises

Improving External Tables for Data Lakes

Moving Computation out of RDBMS

Further Enhanced External Tables

NoSQL

- Big Data SQL
 - directly on HDFS
 - -via HIVE
 - on Kafka
 - on NoSQL

kafka

SQL pushdown to HADOOP Cluster

Adapted Information Management Architecture

e	
nce	
nent	
_	
_	
k	
_	
_	
_	
_	
on	
_	
_	
_	
_	
_	
_	
_	
10	
14	

- Virtualized infrastructure
- Platforms and Software as a Service
- Automation everywhere
- Cheap object storage

And Then... The Cloud

e.

Cloud Data Lake Architecture

© MICROSOFT

Oracle Cloud Warehousing

External Tables on Object Storage

- for multiple Clouds
- partitioned
- hybrid

External Tables to The Rescue... Again

- Credentials
- XT on Data Lake
- Partitioned XT
- Hybrid XT
- Offloading

Demo

 Persistent staging layer for cloud DWH SQL Data Hub on Data Lake Data Offloading

- Savings
- Simplicity
- Scalability
- Access
- Agility
- Performance
- Versatility

Advantages

- Cloud & Data Lake are natural matches
- DWH & Data Lake play well together
- External Tables are key concept for DWH/Data lake integration
- Partitioned & hybrid XTs
 - open up new use cases
 - provide secure, perfomant SQL access
 - combine best of both worlds

Recommendation: have a closer look & improve your **DWH** architecture

Conclusions

