
1

Just Don't Do It

Sins of omission and commission

Jonathan Lewis

jonathanlewis.wordpress.com

www.jlcomp.demon.co.uk

JDDI

Page 2 of 38

Jonathan Lewis

© 2015 - 2020

Independent Consultant

35+ years in IT

30+ using Oracle (5.1a on MSDOS 3.3)

Strategy, Design, Review,

Briefings, Educational,

Trouble-shooting

Oracle author of the year 2006

Select Editor’s choice 2007

UKOUG Inspiring Presenter 2011

ODTUG 2012 Best Presenter (d/b)

UKOUG Inspiring Presenter 2012

UKOUG Lifetime Award (IPA) 2013

Member of the Oak Table Network

Oracle ACE Director

O1 visa for USA

My History

2

JDDI

Page 3 of 38

Jonathan Lewis

© 2015 - 2020

How to spend less time on a job

• Don't do it

• Do it less often

• Do it more efficiently

• Don't do it in little bits

• Do it in a quiet period

JDDI

Page 4 of 38

Jonathan Lewis

© 2015 - 2020

Internal Avoidance Mechanisms

• Indexing

• Materialized views

• Storage Indexes

• Zone Maps

The optimizer and run-time engine have many mechanisms for reducing work, or

avoiding repeating work they have done once. We can learn from these principles.

• Scalar Subquery Caching

• Result Cache

• Deterministic functions

• Pragma UDF

• Partition elimination

• Bloom filters

• Join Elimination

• Partial Join Evaluation

3

JDDI

Page 5 of 38

Jonathan Lewis

© 2015 - 2020

Superfluous Updates (a)

CPU Elapsd

Physical Reads Executions Reads per Exec %Total Time (s) Time (s) Hash Value

--------------- ------------ -------------- ------ -------- --------- ----------

2,951,745 1 2,951,745.0 13.3 750.49 1306.68 3185433958

Module: JDBC Thin Client

update HISTORY SET FLAG=0 WHERE CLASS = 'x'

update history set flag = 0

where class = 'x'

and flag != 0;

Updates a few hundred rows instead of 5 million.

This halved the elapsed time - but still did a very big tablescan

This was from a statspack report taken from an overnight batch job. Step 1 - don't

update data that isn't going to change (unless you really want to lock it anyway).

Important point: "flag" had been
declared NOT NULL.

http://jonathanlewis.wordpress.com/statspack-distractions/

https://jonathanlewis.wordpress.com/2019/09/08/quiz-night-34/

(quiz answer: 12.2 makes the original statement more expensive)

JDDI

Page 6 of 38

Jonathan Lewis

© 2015 - 2020

Superfluous Updates (b)

create index hst_idx on history(

case when class = 'x' and flag != 0 then 1 end

);

Step 2: Add a high precision, minimum-risk index. Recent versions of Oracle collect

index stats automatically but you still need to gather column stats.

select column_name from user_ind_columns -- find the hidden column name

where table_name = 'HISTORY' and index_name = 'HST_IDX';

begin

dbms_stats.gather_table_stats(

user,

'history',

method_opt=> 'for all hidden columns size 1'

-- method_opt=> 'for columns sys_nc00019$ size 1'

);

end;

/

This index as small as it could be, identifies exactly the data we are interested in and no more,
and is most unlikely to be used by any other SQL in the system.

4

JDDI

Page 7 of 38

Jonathan Lewis

© 2015 - 2020

Superfluous Updates (c)

select state, flag from history

where case when flag = 'x' and state != 0 then 1 end = 1

;

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 28 | 196 | 5 |

| 1 | TABLE ACCESS BY INDEX ROWID| HISTORY | 28 | 196 | 5 |

|* 2 | INDEX RANGE SCAN | HST_IDX | 28 | | 1 |

In 11g you're more likely to create a virtual column on the table and create an

index on the virtual column. In 12c you can also declare the column invisible.

Predicate Information (identified by operation id):

2 - access(CASE WHEN ("FLAG"='x' AND "STATE"<>0) THEN 1 END =1)

alter table t1 add x_status /* invisible */

generated always as (

case when flag = 'x' and state != 0 then 1 end

) virtual

;

JDDI

Page 8 of 38

Jonathan Lewis

© 2015 - 2020

Don't repeat the work (a)

update small_table t

set fcr7 = (

select fcr7 * 100 -- where’s the alias?

from slow_view d

where d.monat = t.monat

and d.dl = t.dl

)

See https://jonathanlewis.wordpress.com/2016/01/08/ctes-and-updates/ for write-up

• The update takes 3 to 8 hours to run.

• There are 84 rows in small_table

• It takes about 7 minutes to execute "select * from slow_view" returning 63 rows

5

JDDI

Page 9 of 38

Jonathan Lewis

© 2015 - 2020

Don't repeat the work (b)

update small_table t

set fcr7= (

with d as (

select /*+ materialize */

fcr7, monat, dl

from slow_view

)

select fcr7 * 100

from d

where d.monat = t.monat

and d.dl = t.dl

)

• The query against slow_view now runs once.

• The 84 row correlated update will scan a small "temporary table" 84 times

• It should take about 7 minutes to execute the statement

It might have been possible to rewrite the update as a MERGE command - but that

might have been difficult. Maybe there was a safe way to use the SQL result cache.

JDDI

Page 10 of 38

Jonathan Lewis

© 2015 - 2020

Don't do it in little bits

Getting Started

Doing the work

SQL*Net round-trips

PL/SQL single row processing
Inline Scalar subqueries
Nested loops !
Buffer gets - costs !

Finishing off

6

JDDI

Page 11 of 38

Jonathan Lewis

© 2015 - 2020

Array Fetching (a)

This query takes 28 seconds to run - how can I make it go faster ?

select /*+ full(my_big_table) */

max (id) id

from

my_big_table

group by

other_id, event, company_id, security_id;

| Id | Operation | Name | Rows | Bytes |TempSpc|

| 0 | SELECT STATEMENT | | 7951K| 257M| |

| 1 | SORT GROUP BY | | 7951K| 257M| 365M|

| 2 | PARTITION RANGE ALL| | 7951K| 257M| |

| 3 | TABLE ACCESS FULL | MY_BIG_TABLE | 7951K| 257M| |

That's not bad for scanning and aggregating (at least) 257MB / 8 million rows of data.

A covering index with an index fast full scan was "a little" faster.

A full scan might avoid the sort - if it were possible (nulls and partitions make this harder)

Running parallel might be faster - or might give a clue about performance

The covering index was about half the size of the table. It's an expensive strategy

with massive potential for unexpected side effects, and only 8 seconds saving.

JDDI

Page 12 of 38

Jonathan Lewis

© 2015 - 2020

Array Fetching (b)

set autotrace on statistics

You could (should) enable tracing but in this case autotrace held a big clue about the

problem: small array fetches. (Why does someone want 1.6M "raw" rows anyway?)

set arraysize 1000 -- Path with index fast full scan dropped to 4 seconds

set JDBC connection property “defaultRowPrefetch” (default 10)

… etc.

Statistics

91 recursive calls

10 db block gets

224115 consistent gets

10578 physical reads

0 redo size

25944773 bytes sent via SQL*Net to client

1200334 bytes received via SQL*Net from client

109080 SQL*Net roundtrips to/from client

0 sorts (memory)

1 sorts (disk)

1636183 rows processed

Step 1: where do you spend the time ?

7

JDDI

Page 13 of 38

Jonathan Lewis

© 2015 - 2020

Constant functions (a)

--

|Id |Operation | Name |Starts|A-Rows| A-Time |Buffers |

--

| 0 |SELECT STATEMENT | | 1 | 1 |00:00:11.70 | 38245 |

| 1 | NESTED LOOPS | | 1 | 1 |00:00:11.70 | 38245 |

| 2 | NESTED LOOPS | | 1 | 1 |00:00:11.70 | 38244 |

|*3 | HASH JOIN OUTER | | 1 | 1 |00:00:11.70 | 38242 |

|*4 | TABLE ACCESS FULL | ICX_SESSIONS | 1 | 1 |00:00:11.70 | 38165 |

|*5 | TABLE ACCESS FULL | FND_RESPONSIBILITY | 1 | 2192 |00:00:00.01 | 77 |

|*6 | INDEX UNIQUE SCAN | FND_USER_U1 | 1 | 1 |00:00:00.01 | 2 |

| 7 | TABLE ACCESS BY INDEX ROWID| FND_USER | 1 | 1 |00:00:00.01 | 1 |

--

Predicate Information (identified by operation id):

3 - access(RESPONSIBILITY_ID=ICX.RESPONSIBILITY_ID)

4 - filter((ICX.DISABLED_FLAG<>'Y' AND ICX.PSEUDO_FLAG='N' AND

icx.last_connect > sysdate@!-

to_number(nvl(fnd_profile.value('icx_session_timeout'),'30'))/60/24))

5 - filter(NVL(ZD_EDITION_NAME,'ORA$BASE')='V_20200519_1939')

6 - access(USR.USER_ID=ICX.USER_ID)

The tablescan at operation 4 is taking 11.7 seconds for only 38,000 buffers. So what's

the predicate being tested for every row. Note the PL/SQL function (FND is a clue).

JDDI

Page 14 of 38

Jonathan Lewis

© 2015 - 2020

Constant functions (b)

|Id |Operation | Name |Starts | A-Rows | A-Time | Buffers |

| 0 |SELECT STATEMENT | | 1 | 14 |00:00:00.35 | 38584 |

|*1 | HASH JOIN RIGHT OUTER| | 1 | 14 |00:00:00.35 | 38584 |

|*2 | TABLE ACCESS FULL | FND_RESPONSIBILITY | 1 | 2192 |00:00:00.01 | 76 |

|*3 | HASH JOIN | | 1 | 14 |00:00:00.34 | 38508 |

| 4 | TABLE ACCESS FULL | FND_USER | 1 | 2627 |00:00:00.01 | 121 |

|*5 | TABLE ACCESS FULL | ICX_SESSIONS | 1 | 14 |00:00:00.34 | 38387 |

| 6 | FAST DUAL | | 1 | 1 |00:00:00.01 | 0 |

Predicate Information (identified by operation id):

1 - access(RESPONSIBILITY_ID=ICX.RESPONSIBILITY_ID)

2 - filter(NVL(ZD_EDITION_NAME,'ORA$BASE')='V_20200519_1939')

3 - access(USR.USER_ID=ICX.USER_ID)

5 - filter((ICX.DISABLED_FLAG<>'Y' AND ICX.PSEUDO_FLAG='N' AND

ICX.LAST_CONNECT>))

icx.last_connect > (select sysdate@! -

nvl (fnd_profile.value ('icx_session_timeout'),'30')/60/24 from dual)

Technically the subquery against dual operates as a filter subquery - running once

per row examined; but scalar subquery caching means it only needs to run once.

8

JDDI

Page 15 of 38

Jonathan Lewis

© 2015 - 2020

Responses Offered

Appropriate Responses

Which version of Oracle ?

Where is the time going ?

Is the time spent on the select or the insert ?

Is this a single big batch load, or lots of small batch inserts ?

Is there any data in the table before you start

Bad response

"Never do in PL/SQL that which can be done in plain SQL"

There were a number of responses to the original question.

In this case many of them were good questions to clarify the nature of the problem.

JDDI

Page 16 of 38

Jonathan Lewis

© 2015 - 2020

"Never do in PL/SQL …"
declare

cursor c1 is select * from t2;

type c1_array is table of c1%rowtype index by binary_integer;

m_tab c1_array;

begin

open c1;

loop

fetch c1 bulk collect into m_tab limit 100;

begin

forall i in 1..m_tab.count save exceptions

insert into t1 values m_tab(i);

exception

when {ORA-24381} then ... -- exception handling code

end;

exit when c1%notfound;

end loop;

close c1;

end;

Q: Why do this instead of a simple "insert into t1 select * from t2" ? A: It's an

efficient way to handle the occasional error without producing a massive rollback..

9

JDDI

Page 17 of 38

Jonathan Lewis

© 2015 - 2020

Never … ?

Pure SQL

Bulk collect / ForAll

Pure SQL with rollback due to failure

Bulk collect / Forall

The standard comparison

Time

But what if it fails ?

And when was it validated
Validation mechanisms to allow Pure SQL

Bulk collect / Forall

Pure SQL

I see this dogmatic criticism too often - "You should use an SQL statement and not a

PL/SQL procedure". This demonstrates an absence of a proper cost/benefit analysis.

JDDI

Page 18 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (a)

I want a mechanism that breaks a table

down into a number of chunks that (plus

or minus 1) all hold the same number of

essentially consecutive blocks.

Can it be done in pure SQL ?

Simplified starting point - assume the table

is a single segment (non-partitioned)

Of course it can be done -

but should it be done ?

with extents as (

select file_id, block_id, blocks

from dba_extents

where owner = upper('&m_owner')

and segment_name = upper('&m_segment')

),

expansion as (

select --+ materialize

rownum id

from dual

connect by

level <= (select max(blocks) from extents)

),

expanded_blocks as (

select

ext.file_id, ext.block_id, ext.blocks,

ext.block_id + exp.id - 1 individual_block

from

extents ext,

expansion exp

where

exp.id <= ext.blocks

),

tiled as (

select

file_id, block_id, individual_block,

ntile(&m_tiles) over (order by file_id, individual_block) tile

from

expanded_blocks

),

ranges as(

select

file_id,

tile,

min(individual_block) start_block,

max(individual_block) end_block

from

tiled

group by

file_id,

tile

)

select

*

from

ranges

order by

file_id, tile, start_block

;

Obviously PL/SQL can be used in the wrong circumstances, but it can be the perfect

environment for "enhancing" the data after the SQL has acquired a suitable data set

10

JDDI

Page 19 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (b)

with extents as (

select file_id, block_id, blocks

from dba_extents

where owner = upper('&m_owner')

and segment_name = upper('&m_segment')

),

expander as (

select --+ materialize

rownum id

from dual

connect by

level <= (select max(blocks) from extents)

),

expanded_blocks as (

select

ext.file_id, ext.block_id, ext.blocks,

ext.block_id + exp.id - 1 individual_block

from

extents ext,

expander exp

where

exp.id <= ext.blocks

), -- e.g. 120 extents x 1,024 blocks

The (relatively) simple SQL solution is not efficient - we start at the scale of extents

and expand to the scale of blocks, then contract to the scale of chunks required.

JDDI

Page 20 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (c)

tiled as (

select

file_id, block_id, individual_block,

ntile(&m_tiles) over (order by file_id, individual_block) tile

from

expanded_blocks

),

ranges as(

select

file_id,

tile,

min(individual_block) start_block,

max(individual_block) end_block

from

tiled

group by -- breaks up a chunk that crosses files

file_id,

tile

)

select

{cosmetics for rowid ranges}

from ranges

order by

file_id, tile, start_block

;

For small objects the code is adequate - but it's new code for dbms_parallel_execute

and you don't (usually) use that package for "small" objects.

11

JDDI

Page 21 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (d)

Extents

Chunks

The bit in the middle is huge

The Brontosaurus Query

JDDI

Page 22 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (e)

Extent A

Extent B

Extent C

Extent D

Extent E

Extent F

8

8

8

32

32

64

152

Chunk 3 50

Chunk 2 51

Chunk 1 51

152

8

8

8

27

32

14

5

50

A picture of what we want gives us a strong hint that we should use a simple SQL

statement and then count our way through the result (using PL/SQL)

12

JDDI

Page 23 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (f)

select

file_id, block_id, blocks,

sum(blocks) over() tot_blocks

from

dba_extents

where

owner = upper('&m_owner')

and segment_name = upper('&m_segment')

order by

file_id, block_id

;

The driving query of a PL/SQL loop solution

For a scalable pure SQL treatment see:

http://stewashton.wordpress.com/category/chunking-tables/

JDDI

Page 24 of 38

Jonathan Lewis

© 2015 - 2020

SQL vs. PL/SQL (g)

with extents_data as (

select /*+ qb_name(extents_data) */

o.data_object_id, e.file_id, e.block_id, e.blocks

from dba_extents e

join all_objects o

on e.owner = o.owner

and e.segment_name = o.object_name

and e.segment_type = o.object_type

and decode(e.partition_name,

o.subobject_name, 0,

1

) = 0

where e.segment_type like 'TABLE%'

and e.owner = :owner

and e.segment_name = :table_name

)

, filtered_extents as (

select /*+ qb_name(filtered_extents)*/ * from (

select

width_bucket(first_ext_blk-1, 0, tot_blks, :chunks)

as prev_chunk,

width_bucket(first_ext_blk, 0, tot_blks, :chunks)

as first_chunk,

width_bucket(next_ext_blk-1, 0, tot_blks, :chunks)

as last_chunk,

width_bucket(next_ext_blk, 0, tot_blks, :chunks)

as next_chunk,

e.*

from extents_with_sums e

)

where prev_chunk < next_chunk

)

This is roughly two-thirds of an SQL statement that produces exactly the required

result, slightly faster than the PL/SQL approach - but it's much harder to understand.

, extents_with_sums as (

select /*+ qb_name(extents_with_sums) */

sum(blocks) over() as tot_blks,

sum(blocks) over(

order by data_object_id, file_id, block_id

) - blocks as first_ext_blk,

sum(blocks) over(

order by data_object_id, file_id, block_id

) as next_ext_blk,

e.*

from extents_data e

)

, expanded_extents as (

select /*+ qb_name(expanded_extents) */

first_chunk + level - 1 as chunk,

prev_chunk, next_chunk, data_object_id, file_id,

block_id, tot_blks, first_ext_blk

from filtered_extents

connect by first_ext_blk = prior first_ext_blk

and prior sys_guid() is not null

and first_chunk + level - 1 <= last_chunk

)

13

JDDI

Page 25 of 38

Jonathan Lewis

© 2015 - 2020

Cartesian Puzzle (a)

Spec: We have a "big table" with many "attribute" columns,
We have a small "types" table with corresponding columns and a "score"

For each row in the big_table find the best match from types table.
All the attribute columns in big_table are mandatory
At least one attribute in each row of the types table will be non-null.
There is always at least one partial match.

select

bt.id, bt.v1,

ty.category,

ty.relevance

from

big_table bt, -- 500,000 rows

types ty -- 900 rows

where

nvl(ty.att1(+), bt.att1) = bt.att1

and nvl(ty.att2(+), bt.att2) = bt.att2

and nvl(ty.att3(+), bt.att3) = bt.att3

and nvl(ty.att4(+), bt.att4) = bt.att4

;

The code means we have to compare every row in the big table with every row in the

small table - for a total of 450 million intermediate rows "generated")

JDDI

Page 26 of 38

Jonathan Lewis

© 2015 - 2020

Cartesian Puzzle (b) - sample data

Big_table

ATT1 ATT2 ATT3 ATT4 ID

1 1 2 1 1

1 3 1 4 2

Results
1 1 2 1 1

1 XX 10

1 1 YY 20

1 3 1 4 2

1 XX 10

1 1 ZZ 20

big_table id = 1 fails to match the 3rd row of types because of the mismatch in att3.

big_table id = 2 fails to match the 2nd row of types because of the mismatch in att4.

Types

ATT1 ATT2 ATT3 ATT4 CATEGORY SCORE

1 XX 10

1 1 YY 20

1 1 ZZ 20

14

JDDI

Page 27 of 38

Jonathan Lewis

© 2015 - 2020

Cartesian Puzzle (c)

with distinct_data as (

select /*+ materialize */

distinct att1, att2, att3, att4 -- 400 rows!

from big_table

)

select bt.id, bt.v1, ty.category, ty.relevance

from

distinct_data dd, types ty, big_table bt

where

nvl(ty.att1(+), dd.att1) = dd.att1 -- "expensive" but small

and nvl(ty.att2(+), dd.att2) = dd.att2 -- 900 types x 400 rows

and nvl(ty.att3(+), dd.att3) = dd.att3 -- 360,000 tests

and nvl(ty.att4(+), dd.att4) = dd.att4 -- (400 "best" results)

--

and bt.att1 = dd.att1 -- precise big join

and bt.att2 = dd.att2

and bt.att3 = dd.att3

and bt.att4 = dd.att4

;

But how many distinct combinations are there in the big table ? Create a result set of

the distinct set, do the match with that, then join with an exact match to the big table.

JDDI

Page 28 of 38

Jonathan Lewis

© 2015 - 2020

Cartesian Puzzle (d)

| Id | Operation | Name | Rows| Time |

| 0 | SELECT STATEMENT | | 520K| 00:00:30 |

| 1 | TEMP TABLE TRANSFORMATION | | | |

| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D662C | | |

| 3 | HASH UNIQUE | | 400 | 00:00:30 |

| 4 | TABLE ACCESS FULL | BIG_TABLE | 500K| 00:00:01 |

|* 5 | HASH JOIN | | 520K| 00:00:01 |

| 6 | NESTED LOOPS OUTER | | 500 | 00:00:01 |

| 7 | VIEW | | 400 | 00:00:01 |

| 8 | TABLE ACCESS FULL | SYS_TEMP_0FD9D662C | 400 | 00:00:01 |

|* 9 | TABLE ACCESS FULL | TYPES | 1 | 00:00:01 |

| 10 | TABLE ACCESS FULL | BIG_TABLE | 500K| 00:00:01 |

http://jonathanlewis.wordpress.com/2015/04/15/cartesian-join/

Execution time dropped from about 2 hours (almost pure CPU time) to less than 30

seconds.

15

JDDI

Page 29 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (a)

OTN: "This statement takes 7 hours to run , how do I reduce the time ?"

SELECT 'ISRP-734', to_date('&DateTo', 'YYYY-MM-DD'),

SNE.ID AS HLR

, SNR.FROM_NUMBER||' - '||SNR.TO_NUMBER AS NUMBER_RANGE

, COUNT(M.MSISDN) AS AVAILABLE_MSISDNS -- 37,650 row result

FROM

SA_NUMBER_RANGES SNR -- 10,000 rows

, SA_SERVICE_SYSTEMS SSS -- 1,643 rows

, SA_NETWORK_ELEMENTS SNE -- 200 rows

, SA_MSISDNS M -- 72M rows

WHERE

SSS.SEQ = SNR.SRVSYS_SEQ

AND SSS.SYSTYP_ID = 'OMC HLR'

AND SNE.SEQ = SSS.NE_SEQ

AND SNR.ID_TYPE = 'M'

AND M.MSISDN >= SNR.FROM_NUMBER

AND M.MSISDN <= SNR.TO_NUMBER

AND M.STATE = 'AVL'

GROUP BY

SNE.ID,

SNR.FROM_NUMBER||' - '||SNR.TO_NUMBER

;

http://community.oracle.com/message/12993635

http://jonathanlewis.wordpress.com/2015/04/10/counting-2/

JDDI

Page 30 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (b)

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)|

| 0 | SELECT STATEMENT | | 53M| 3108M| | 26M (2)|

| 1 | HASH GROUP BY | | 53M| 3108M| 164G| 26M (2)|

| 2 | MERGE JOIN OUTER | | 2438M| 138G| | 195K (15)|

| 3 | SORT JOIN | | 1066 | 51168 | | 21 (15)|

|* 4 | HASH JOIN | | 1066 | 51168 | | 20 (10)|

|* 5 | HASH JOIN | | 328 | 8528 | | 10 (20)|

| 6 | TABLE ACCESS FULL | SA_NETWORK_ELEMENTS | 146 | 1460 | | 2 (0)|

|* 7 | VIEW | index$_join$_002 | 328 | 5248 | | 7 (15)|

|* 8 | HASH JOIN | | | | | |

|* 9 | HASH JOIN | | | | | |

|*10 | INDEX RANGE SCAN | SRVSYS_SYSTYP_FK_I | 328 | 5248 | | 2 (0)|

|*11 | INDEX FAST FULL SCAN| E_NE_FK_I | 328 | 5248 | | 1 (0)|

| 12 | INDEX FAST FULL SCAN | SRVSYS_PK | 328 | 5248 | | 1 (0)|

|*13 | TABLE ACCESS FULL | SA_NUMBER_RANGES | 2219 | 48818 | | 10 (0)|

|*14 | FILTER | | | | | |

|*15 | SORT JOIN | | 13M| 167M| 622M| 169K (2)|

|*16 | TABLE ACCESS FULL | SA_MSISDNS | 13M| 167M| | 104K (2)|

The plan showed a merge join outer between the tables sa_number_ranges and

sa_msisdns which explodes the data massively before the group by contracts it

16

JDDI

Page 31 of 38

Jonathan Lewis

© 2015 - 2020

The Brontosaurus Query

Ranges

Ranges with counts

What do we do about this bit ?

JDDI

Page 32 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (c)

insert /*+ append */ into gtt_msisdns

select

msisdn,

row_number() over(order by msisdn) counter

from

sa_msisdns

where

m.state = 'AVL'

;

There is no way around this join explosion if we use the tables as they are (even

if we "hide" the join inside a pl/sql function) until 12c and pattern recognition

Design an extract of sa_msisdns to run as part of this report mechanism.

Give each msisdn a row number (based on sorting the msisdns)

Create a unique index on (msisdn, {ordercolumn})

Costs: one big sort + write to table (less than two minutes for 40M msisdns)

Of course the drawback here is that we don't have a read-consistent result. But is a

result that's out of date by 7 hours better than one that's inconsistent by 2 minutes

17

JDDI

Page 33 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (d)

Drive the query from sa_number_ranges, joined twice to the extract.

select

rng.from_number, rng.to_number,

from1.msisdn, from1.counter,

to1.msisdn, to1.counter,

1 + to1.counter - from1.counter range_count

from

sa_number_ranges rng,

gtt_msisdns from1,

gtt_msisdns to1

where

from1.msisdn = (

select min(gf.msisdn) from gtt_msisdns gf

where gf.msisdn >= rng.from_number

)

and to1.msisdn = (

select max(gt.msisdn) from gtt_msisdns gt

where gt.msisdn <= rng.to_number

)

;

It would be nice if there was a way of adding an index (optionally unique) to a "with

subquery" clause, then we would effectively have our read-consistent GTT.

JDDI

Page 34 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (e)

On a test data set (40M msisdns, 10K number ranges) this query averaged

7 buffer gets per range to "count" the number of MSISDNs in that range

Run time: ca. 0.2 seconds

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOPS | |

| 2 | NESTED LOOPS | |

| 3 | TABLE ACCESS FULL | SA_NUMBER_RANGES |

|* 4 | INDEX RANGE SCAN | GM_I1 |

| 5 | SORT AGGREGATE | |

| 6 | FIRST ROW | |

|* 7 | INDEX RANGE SCAN (MIN/MAX)| GM_I1 |

|* 8 | INDEX RANGE SCAN | GM_I1 |

| 9 | SORT AGGREGATE | |

| 10 | FIRST ROW | |

|* 11 | INDEX RANGE SCAN (MIN/MAX) | GM_I1 |

18

JDDI

Page 35 of 38

Jonathan Lewis

© 2015 - 2020

order by from_number, to_number -- need an ordering

measures a.from_number from_number, -- the output columns

a.to_number to_number,

count(b.*) range_count

pattern(a b*) -- define "patterns"

define a as to_number is not null, -- rules to identify

b as from_number <= a.to_number -- a "type" of row

select * from (

select from_number, to_number from number_ranges

union all

select msisdn, null from msisdns

)

match_recognize(

order by from_number, to_number -- need an ordering

measures a.from_number from_number, -- the output columns

a.to_number to_number,

count(b.*) range_count

pattern(a b*) -- define "patterns"

define a as to_number is not null, -- rules to identify

b as from_number <= a.to_number -- a "type" of row

);

Intermediates (f) - match_recognize solution

Stew Ashton solutions

New technology (12c) - match_recognize()

Simple case - assume the ranges don't overlap.

See also: http://stewashton.wordpress.com/2015/12/12/summarize-data-by-range/

for a solution with overlapping date ranges. Read-consistent, with runtime < 2 mins!

JDDI

Page 36 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (g) - worked example

insert into number_ranges values (3, 6);

insert into number_ranges values (8, 13);

insert into msisdns

select 2 * rownum - 1

from dual connect by rownum <= 10;

select * from (

select from_number, to_number from number_ranges

union all

select msisdn, null from msisdns

)

order by from_number, to_number

;

FROM_NUMBER TO_NUMBER

1

3 6

3

5

7

8 13

9

11

13

15

17

19

FROM_NUMBER TO_NUMBER RANGE_COUNT

3 6 2

8 13 3

With a small sample we can construct the intermediate result to see how Oracle is

walking the data to find the pattern.

FROM_NUMBER TO_NUMBER

1

3 6

3

5

7

8 13

9

11

13

19

JDDI

Page 37 of 38

Jonathan Lewis

© 2015 - 2020

Intermediates (h)

| Id | Operation | Name | Rows |

| 0 | SELECT STATEMENT | | |

| 1 | VIEW | | 1001K|

| 2 | MATCH RECOGNIZE SORT DETERMINISTIC FINITE AUTO| | 1001K|

| 3 | VIEW | | 1001K|

| 4 | UNION-ALL | | |

| 5 | TABLE ACCESS FULL | NUMBER_RANGES | 1000 |

| 6 | TABLE ACCESS FULL | MSISDNS | 1000K|

Primary cost: one big sort

10032 trace
---- Sort Statistics ------------------------------

Input records 1001000

Output records 1001000

Total number of comparisons performed 8157115

Comparisons performed by in-memory sort 8157115

Total amount of memory used 25400320

Uses version 2 sort

---- End of Sort Statistics -----------------------

See also: http://www.slideshare.net/stewashton/row-patternmatching12ctech14/ for a

presentation on match_recognize(). "Deterministic finite auto" is the ideal.

JDDI

Page 38 of 38

Jonathan Lewis

© 2015 - 2020

Conclusion

• Think technology

• Look for redundant updates

• Use array processing

• Avoid repeating expensive work

• PL/SQL may be better for special cases

• Intermediate tables are not always evil

• Think new technology

• Find the Brontosaurus

